Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36766270

ABSTRACT

A total of 200 26-day-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.55 ± 0.62 kg) were used in a 6-week experiment to evaluate the effects of adding probiotics complex supplementation (Syner-ZymeF10) with high and low ZnO diets on the performance of weaning pigs in 42 days. Pigs were randomly allotted to a 2 × 2 factorial arrangement and they were supplemented with two concentration level of ZnO with 3000 ppm and 300 ppm and probiotics complex supplementation with 0 and 0.1%. There were ten replicate pens per treatment with five pigs per pen (two gilts and three barrows). Pigs fed diets with 3000 ppm ZnO had a higher BW during the overall period and ADG during d 8-21, d 22-42, and overall period than pigs receiving 300 ppm ZnO diets (p < 0.05), as well as a G: F which tended to increase on d 8-21 and overall period (p < 0.1) and decreased tendency on faecal gas emission of methyl mercaptans and acetic acid concentration (p < 0.1). Dietary probiotics complex supplementation had decreased the E. coli count (p < 0.05) and tended to increase the Lactobacillus count (p < 0.1). Dietary probiotics complex supplementation and different level of ZnO supplementation had no significant effect on the nutrition digestibility and faecal score (p > 0.05). In conclusion, probiotic supplementation reduced the fecal E. coli counts and tended to improve Lactobacillus counts. There were no interactive effects between ZnO and probiotic complex supplementation on all the measured parameters.

2.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 589-597, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35971570

ABSTRACT

The goal of this experiment was to examine the effect of dietary inclusion of full-fatted mealworm larvae (FFML) or hydrolysate mealworm larvae (HML) (Tenebrio molitor) as a substitute for spray-dried plasma protein (SDPP) as a protein source on the performance and immune status of nursery pigs. A total of 150 crossbred piglets (6.48 ± 0.01 kg) were randomly allocated to 1 of 3 dietary groups in two feeding phases: phase 1 (Days 0-14) and phase 2 (Days 15-35). Each treatment had 10 replicates with 5 pigs per replicate. The nutritious diets were: Phase 1: SDPP-CON (control-basal diet) + 6% SDPP diet; FFML-CON + 3% SDPP and 3% FFML diet; HML-CON + 3% SDPP and 3% HML diet. Phase 2: SDPP-CON (basal diet) + 3% SDPP diet; FFML-CON + 3% FFML diet; HML-CON + 3% HML diet. The inclusion of FFML or HML diet did not show significant difference but had a comparable effect as that of standard control diet containing SDPP on the growth performance, nutrient digestibility and faecal score throughout the trial. In comparison to pigs fed SDPP diet, pigs fed FFML and HML diets had similar and/or higher (p < 0.05) serum immunoglobulin (IgA and IgG) concentration at the end of phase 1 and 2. The result of the present study indictes that SDPP would be partially or fully replaced with FFML or HML to suit weaning pigs diet.


Subject(s)
Tenebrio , Swine , Animals , Weaning , Diet , Blood Proteins , Feces , Animal Feed/analysis
3.
Anim Biosci ; 36(4): 642-653, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36397695

ABSTRACT

OBJECTIVE: This study was conducted to evaluate effects of ß-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, fecal microbiota, fecal score, and nutrient digestibility in weaning pigs. METHODS: A total of 200 weaning pigs with an average body weight (BW) of 7.64±0.741 kg were allotted to five treatment groups and were divided based on sex and initial BW in four replicates with ten pigs per pen in a randomized complete block design. The experimental diets included a corn‒soybean meal-based basal diet with or without 0.1% or 0.2% ß-glucan and 0.02% vitamin E. The pigs were fed the diets for 6 weeks. A total of 15 barrows were used to evaluate the nutrient digestibility by the total collection method. The BW and feed intake were measured at the end of each phase. Blood samples were collected at the end of each phase, and fecal samples were collected at the end of the experiment. RESULTS: The addition of ß-glucan with vitamin E to weaning pig feed increased BW, average daily gain, and average daily feed intake. A significant decrease in yeast and mold and Proteobacteria and a tendency for Lactobacillus to increase compared to the control was shown when 0.1% ß-glucan and 0.02% vitamin E were added. The fecal score in weaning pigs was lower in the treatments supplemented with 0.1% or 0.2% ß-glucan and 0.02% vitamin E compared to the control. In addition, vitamin E was better supplied to weaning pigs by increasing the concentration of α-tocopherol in the blood of weaning pigs when 0.02% vitamin E was supplemented. However, there was no significant difference in either the immune response or nutrient digestibility. CONCLUSION: Inclusion of 0.1% ß-Glucan with 0.02% vitamin E in a weaning pig's diet were beneficial to the growth performance of weaning pigs by improving intestinal microbiota and reducing the incidence of diarrhea.

4.
Anim Microbiome ; 4(1): 60, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36434671

ABSTRACT

BACKGROUND: Probiotics have been reported to exhibit positive effects on host health, including improved intestinal barrier function, preventing pathogenic infection, and promoting nutrient digestion efficiency. These internal changes are reflected to the fecal microbiota composition and, bacterial metabolites production. In accordance, the application of probiotics has been broadened to industrial animals, including swine, which makes people to pursue better knowledge of the correlation between changes in the fecal microbiota and metabolites. Therefore, this study evaluated the effect of multi-strain probiotics (MSP) supplementation to piglets utilizing multiomics analytical approaches including metagenomics, culturomics, and metabolomics. RESULTS: Six-week-old piglets were supplemented with MSP composed of Lactobacillus isolated from the feces of healthy piglets. To examine the effect of MSP supplement, piglets of the same age were selected and divided into two groups; one with MSP supplement (MSP group) and the other one without MSP supplement (Control group). MSP feeding altered the composition of the fecal microbiota, as demonstrated by metagenomics analysis. The abundance of commensal Lactobacillus was increased by 2.39%, while Clostridium was decreased, which revealed the similar pattern to the culturomic approach. Next, we investigated the microbial metabolite profiles, specifically SCFAs using HPLC-MS/MS and others using GC-MS, respectively. MSP supplement elevated the abundance of amino acids, including valine, isoleucine and proline as well as the concentration of acetic acid. According to the correlation analyses, these alterations were found out to be crucial in energy synthesizing metabolism, such as branched-chain amino acid (BCAA) metabolism and coenzyme A biosynthesis. Furthermore, we isolated commensal Lactobacillus strains enriched by MSP supplement, and analyzed the metabolites and evaluated the functional improvement, related to tight junction from intestinal porcine enterocyte cell line (IPEC-J2). CONCLUSIONS: In conclusion, MSP administration to piglets altered their fecal microbiota, by enriching commensal Lactobacillus strains. This change contributed amino acid, acetic acid, and BCAA concentrations to be increased, and energy metabolism pathway was also increased at in vivo and in vitro. These changes produced by MSP supplement suggests the correlation between the various physiological energy metabolism functions induced by health-promoting Lactobacillus and the growth performance of piglets.

5.
Front Vet Sci ; 9: 915692, 2022.
Article in English | MEDLINE | ID: mdl-35799841

ABSTRACT

Porcine brucellosis, caused by Brucella suis (B. suis), is a notifiable disease causing significant economic losses in production systems. Most infected pigs may act as carriers and shed B. suis even if asymptomatic. This can contribute to environmental persistence, thus hindering control efforts. Here, the environment and the offspring were investigated during and after a B. suis outbreak at a sow breeding farm. The diagnosis of B. suis in sows (n = 1,140) was performed by culture and polymerase chain reaction (PCR) from vaginal swabs, indirect enzyme-linked immunosorbent assay (I-ELISA) from sera, and brucellin skin test (BST). B. suis diagnosis in post-weaning pigs (n = 899) was performed by I-ELISA in sera and BST. The environmental surveillance programme was implemented by placing gauze sponges (n = 175) pre-hydrated in a surfactant and inactivating liquid for Brucella DNA detection by PCR in different farm areas. Our results showed that the offspring of infected sows reacted to in vivo techniques for B. suis. Furthermore, the offspring born during the outbreak displayed higher seropositivity (I-ELISA) and reactivity (BST) than those pigs born after. Brucella DNA was detected in pregnant sow areas, boxes, boots, and post-weaning pig areas. In addition, Brucella DNA environmental detection was higher during the B. suis outbreak than the post B. suis outbreak. The environmental approach has proven to be a simple, practical, valuable, and safe method to detect and monitor B. suis. These results suggest a role of the environment and the offspring that should be considered in porcine brucellosis surveillance and control programmes.

6.
Vet Sci ; 9(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35622761

ABSTRACT

Pigs display an innate preference for sweet taste compounds such as sucrose. However, the influence of sucrose supplementation into maternal diets has not been examined in pigs. We tested the hypothesis that sucrose inclusion into sows' diets would modify the feeding behavior of post-weaning pigs for sweet and umami solutions. Twenty-two sows (85 days of gestation) were used. They randomly received a gestational and lactating diet with or without 50 g/kg of sucrose. Different sucrose and monosodium glutamate solutions were offered to the progeny to analyze different intake behavior measurements during nursery. Pigs born from treated sows presented a higher sucrose threshold than control animals (15 mM vs. 0.1 mM, p = 0.032) and displayed decreased sensory-motivated intake for this disaccharide (p < 0.023). Sucrose consumption decreased (p < 0.021) in pigs born from treated sows, as well as the consumption patterns for the less concentrated solutions (p < 0.014). The inclusion of sucrose into maternal diets (gestation and lactation) could modified pigs' feeding behavior after weaning when offered sweet solutions, which speaks against the practicality of this supplementation in pig production systems.

7.
J Anim Sci Technol ; 63(4): 854-863, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34447961

ABSTRACT

Weaning induces physiological changes in intestinal development that affect pigs' growth performance and susceptibility to disease. As a posttranscriptional regulator, microRNAs (miRNAs) regulate cellular homeostasis during intestinal development. We performed small RNA expression profiling in the small intestine of piglets before weaning (BW), 1 week after weaning (1W), and 2 weeks after weaning (2W) to identify weaning-associated differentially expressed miRNAs. We identified 38 differentially expressed miRNAs with varying expression levels among BW, 1W, and 2W. Then, we classified expression patterns of the identified miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent pattern 1, which had an increased expression at 1W and a decreased expression at 2W. ssc-miR-499-5p represents pattern 2, which had an increased expression at 1W and a stable expression at 2W. ssc-miR-7135-3p and ssc-miR-144 represent pattern 3, which had a stable expression at 1W and a decreased expression at 2W. Eleven miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1, ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, ssc-miR-6782-3p, and ssc-miR-424-5p) represent pattern 4, which had a decreased expression at 1W and a stable expression at 2W. Moreover, we identified 133 candidate targets for miR-196a using a target prediction database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were associated with 19 biological processes, 4 cellular components, 8 molecular functions, and 7 KEGG pathways, including anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that miRNAs regulate the development of the small intestine during the weaning process in piglets by anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways.

8.
Animals (Basel) ; 11(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34359223

ABSTRACT

This study was conducted to evaluate the effects of lysine cell mass (LCM) as an alternative lysine source in diets for weaning pigs on growth performance, diarrhea incidence, and blood profiles. In experiment 1, a total of 200 weaning pigs, with an average body weight (BW) of 6.89 ± 1.04 kg, were allotted into one of five treatments with four replicates of 10 pigs per pen in a randomized complete block design (RCBD). The dietary treatments were composed of LCM supplementation (0, 0.25, 0.5, 0.75, or 1.0%) with partial replacement of L-lysine·HCl (0 to 0.8% for phase 1 diets and 0 to 0.07% for phase 2 diets). The BW and feed intake were recorded at the end of each phase (d 0 to 14 for phase 1, d 14 to 35 for phase 2), and diarrhea incidence was checked daily throughout the experimental period. Blood samples were taken from the jugular vein of pigs at 2 weeks and 5 weeks to determine the blood profiles of weaning pigs. In experiment 2, a total of 144 weaning pigs with an average BW of 6.44 ± 1.19 kg were allotted into one of six treatments with six replicates of four pigs per pen in RCBD. The dietary treatments were composed of LCM supplementation (0 to 3.5% for phase 1 diets and 0 to 2.2% for phase 2 diets) with replacement of L-lysine·HCl from 0 to 100%. In experiment 1, partial replacement of L-lysine·HCl with 0 to 1% LCM did not affect growth performance and diarrhea incidence of pigs. An increase in the LCM supplementation from 0 to 1% with partial replacement of L-lysine·HCl had no influence on the blood urea nitrogen concentrations, whereas it resulted in a linear decrease (p < 0.05) in the serum IgG concentrations for 5 weeks. In experiment 2, increasing the dietary level of LCM with replacement of L-lysine·HCl quadratically decreased (p < 0.05) ADG and G-F ratio for phase 2 and G-F ratio for the overall period such that 100% replacement of L-lysine·HCl with LCM decreased ADG and G-F ratio of weaning pigs. An increase in the LCM supplementation with replacement of L-lysine·HCl tended to decrease linearly (p < 0.10) the diarrhea incidence of weaning pigs for the overall period and linearly decrease (p < 0.05) the serum IgG concentrations for 2 weeks. In conclusion, partial replacement of L-lysine·HCl with LCM from 0 to 1% had no negative impacts on the growth performance, but 100% replacement of L-lysine·HCl with LCM decreased the growth performance of weaning pigs. Therefore, LCM could be included in the diets for weaning pigs up to 2.8% and 1.76% for phase 1 and phase 2, respectively, as a substitute for L-lysine·HCl without detrimental effects on the performance of weaning pigs.

9.
J Anim Sci ; 99(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34159354

ABSTRACT

An experiment was conducted to evaluate the effects of including canola meal (CM) in diets for weaning pigs challenged with a F18 strain of Escherichia coli on growth performance and gut health. A total of 36 individually housed weaned pigs (initial body weight [BW] = 6.22 kg) were randomly allotted to one of the three diets (12 pigs/diet). The three diets were corn-soybean meal (SBM)-based basal diet (control diet) and the basal diet with 0.3% zinc oxide, 0.2% chlortetracycline, and 0.2% tiamulin (antibiotic diet) or with 20% CM diet. The diets were fed in two phases: Phase 1: days 0 to 7 and Phase 2: days 7 to 20. All pigs were given an oral dose of 2 × 109 CFU of F18 strain of E. coli on day 7. Fecal score was assessed daily throughout the trial. Dietary antibiotics increased (P < 0.05) overall average daily gain (ADG) and average daily feed intake (ADFI) compared by 48% and 47%, respectively. Dietary CM increased (P < 0.05) overall ADG and ADFI by 22% and 23%, respectively; but the ADG and ADFI values for CM-containing diet did not reach those for the antibiotics-containing diet. Dietary antibiotics reduced (P < 0.05) fecal score; however, dietary CM unaffected fecal score. Dietary antibiotics decreased (P < 0.05) liver weight per unit live BW by 16% at day 20, whereas dietary CM did not affect liver weight per unit live BW (29.2 vs. 28.6). Also, dietary antibiotics increased (P < 0.05) serum triiodothyronine and tetraiodothyronine levels for day 14, whereas dietary CM did not affect the serum level of these hormones. Dietary antibiotics reduced (P < 0.05) the number white blood cells and neutrophils by 38% and 43% at day 20, respectively, whereas dietary CM tended to reduce (P = 0.09) the number white blood cells by 19% at day 20. The number white blood cells for CM diet tended to be greater (P < 0.10) than that for antibiotics diet. The dietary antibiotics decreased (P < 0.05) the concentration of individual volatile fatty acids and hence of total volatile fatty acid in cecum by 61% at day 20, whereas dietary CM decreased (P < 0.05) cecal butyric acid concentration by 61% and tended to reduce (P < 0.10) total volatile fatty acid concentration by 30% at day 20. In conclusion, the dietary inclusion of 20% CM improved ADG and tended to reduce white blood cell counts. Thus, inclusion of CM in antibiotics-free corn-SBM-based diets for weaned pigs that are challenged with F18 strain of E. coli can result in their improved performance partly through a reduction of the inflammatory response.


Subject(s)
Animal Feed , Brassica napus , Animal Feed/analysis , Animals , Diet/veterinary , Escherichia coli , Swine , Weaning
10.
Animals (Basel) ; 11(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946901

ABSTRACT

Weaning is one of the most stressful events in the life of a pig. Unsuccessful weaning often leads to intestinal and immune system dysfunctions, resulting in poor growth performance as well as increased morbidity and mortality. The gut microbiota community is a complex ecosystem and is considered an "organ," producing various metabolites with many beneficial functions. In this review, we briefly introduce weaning-associated gut microbiota dysbiosis. Then, we explain the importance of maintaining a balanced gut microbiota. Finally, we discuss dietary supplements and their abilities to restore intestinal balance and improve the growth performance of weaning pigs.

11.
J Anim Sci Technol ; 63(1): 104-113, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33987588

ABSTRACT

This study was conducted to investigate the efficiency of a microencapsulated mixture of organic acids (MOA) with low protein in piglet feed on growth performance, diarrhea score, nutrient digestibility, fecal microbial counts, and blood profiles in weaning pigs. A total of 80 pigs [(Landrace × Yorkshire) × Duroc; 6.8 ± 0.48 kg] were randomly assigned to four dietary treatment groups: high protein (HP); low protein (LP); MOA1, LP + 0.2% MOA; and MOA2, LP + 0.3% MOA. The MOA2 group had higher average daily weight gains (during days 0-14 and days 0-28), diarrhea score (during days 0-14, during days 14-28 and days 0-28) and greater digestibility of dry matter (days 14 and 28) compared to the LP group (p < 0.05). However, there were no significant differences (p > 0.05) between the pigs fed diets with the MOA1 and MOA2 in blood profiles and fecal microflora. In conclusion, this study indicates that piglets fed 0.3% MOA in low protein diets maintained similar growth performance and nutrient digestibility, but alleviated the incidence of diarrhea compared to piglets fed high protein diets.

12.
Animals (Basel) ; 11(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801867

ABSTRACT

This experiment was performed to examine the hypothesis that blood plasma (BP) with yeast (Saccharomyces cerevisiae) supplement in the diet of weaning pigs could provoke the growth performance, nutrient digestibility, fecal microbial, and reduce harmful gas excretion. A total of one hundred and eighty healthy piglets were taken and assigned (complete random blocks) to three dietary treatments as: Phase 1: Treatment (TRT) 1-6% BP; TRT 2-3% BP + 3% yeast; TRT 3-6% yeast. Phase 2: TRT 1-3%; BP., TRT 2-1.5% BP + 1.5% yeast; TRT 3- 3% yeast. Phase 3: TRT 1- Control (CON) (Basal diet); TRT 2- CON; TRT 3- CON for six- weeks. Each treatment had twelve replicates and five (three gilts and two barrows) pigs per pen. Dietary inclusion of BP with yeast supplementation significantly increased the body weight of piglets during phase 2 (p = 0.003) and phase 3 (p = 0.032). In addition, TRT2 group piglets had a significant improvement in average daily gain at the end of each phase and overall (p = 0.047, 0.025, 0.018 and 0.012, respectively). At phase 3, TRT2 group piglets showed a significant improvement on nutrient digestibility of dry matter (p = 0.012) and nitrogen (p = 0.040). The fecal microbiota of TRT2 group piglets showed a tendency to increase the number of Lactobacillus counts at phase 1 (p = 0.07) and phase 2 (p = 0.06) as well as, a significant improvement at phase 3 (p = 0.021). In addition, TRT2 group piglets had trend to decrease NH3 (p = 0.074) and H2S (p = 0.069) during phase 2, and significantly reduced NH3 (p = 0.038) and H2S (p = 0.046) at phase 3. However, the fecal score of piglets remains unaffected during the entire trial. At the end of phase 1 piglets' IgG (p = 0.008) was significantly increased with the inclusion of BP with yeast supplementation. Based on the positive effects on body weight, average daily gain, nutrient digestibility, Lactobacillus count, and reduced gas emission, we suggest that dietary supplement with BP and yeast in the diet of weaned piglet could serve as an excellent alternative to antibiotics growth promoters.

13.
Microorganisms ; 9(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466376

ABSTRACT

Feed additives have been suggested to improve animal growth performance through modulating the gut microbiota. The hypothesis of this study was that the combination of two organic acids would exert synergistic effects on the growth performance and gut microbiota of weaning pigs. To test this hypothesis, we followed 398 weaning pigs from two university experiment stations (University of Illinois at Urbana-Champaign (UIUC) and University of Arkansas (UA)) to determine the effects of increasing levels (0%, 0.035%, 0.070%, and 0.105%) of sodium butyrate combined with 0.5% benzoic acid on the growth performance of nursery pigs. At the UA, an additional negative control diet was included and the gut microbiota analysis was carried out. At both universities, increasing levels of sodium butyrate in a diet containing 0.5% benzoic acid improved growth performance, which reached a plateau in the pigs fed 0.035% (SBA0.035) or 0.070% (SBA0.070) butyrate. Gut microbiota analysis revealed that pigs fed the SBA0.035 diet had more diverse microbiota and contained more potentially beneficial bacteria such as Oscillospira, Blautia, and Turicibacter and reduced levels of Veillonella and Sarcina. Results of the present study indicated that the inclusion of sodium butyrate at moderate levels in a diet containing 0.5% benzoic acid improved growth performance of weaning pigs and established potential health benefits on gut microbiota.

14.
J Anim Physiol Anim Nutr (Berl) ; 105(2): 286-293, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33423308

ABSTRACT

This study was conducted to assess the effects of different dose levels of zinc oxide (ZnO) combined with probiotics complex supplementation on the growth, performance, nutrient digestibility, faecal lactobacillus and Enterobacteria counts, noxious gas emissions and faecal score of weaned piglets. A total of 180 crossbred weaning pigs ([Yorkshire × Landrace] × Duroc; 6.61 ± 1.29 kg [mean ± SE]; 28 days old) were used in a 42-day trial. All pigs were randomly allotted to 1 of 4 treatment diets based on initial BW and sex (9 replicate pens/treatment; 2 gilts and 3 barrows/pen). Dietary treatment groups were as follows: CON, basal diet +ZnO 3,000 ppm; BZS, basal diet +ZnO 2,100 ppm +0.1% SynerZymeF10; BZS1, basal diet +ZnO 1,200 ppm +0.1% SynerZymeF10; BZS2, basal diet +ZnO 300 ppm +0.1% SynerZymeF10. During the phase 3, decreasing the ZnO concentration led to a linear reduction in ADG (p = 0.044), and the ADG was lower (p < 0.05) in BZS2 compared with CON treatment during the whole experimental period. The effects of dietary ZnO with probiotics complex were not detected (p > 0.05) on nutrient digestibility, Lactobacillus and E. coli counts, faecal gas emissions and faecal scores. In conclusion, the diet supplementation of ZnO (1,200 ppm) with probiotics complex has been shown to have comparable efficacy to ZnO (3,000 ppm) diet on growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs.


Subject(s)
Microbiota , Probiotics , Zinc Oxide , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Digestion , Female , Male , Nutrients , Probiotics/pharmacology , Swine , Weaning , Zinc Oxide/pharmacology
15.
Vet Med Sci ; 7(2): 424-431, 2021 03.
Article in English | MEDLINE | ID: mdl-32729230

ABSTRACT

The purpose of this study was to examine the effect of gaseous hydrogen sulphide on growth performance and cecal microbial diversity in weaning pigs. A total of 24 weaning pigs (Landrace × Yorkshire × Duroc; average body weight = 8.55 ± 0.68 kg;weaning at 28 days) were selected and randomly divided into four groups (six replicates in each group). The piglets were exposed to hydrogen sulphide (0, 5, 10 and 15 mg/m3 ) during the experiment period, which lasted 28 days in four controlled environmental chambers. The results showed that exposure to hydrogen sulphide reduced the average daily gain (ADG), average daily feed intake (ADFI), and increased the diarrhoea rate of piglets. Hydrogen sulphide could increase the abundance and diversity of intestinal microbiota. The abundance of Firmicutes and Proteobacteria increased and Bacteroides decreased in the treatment groups. Five biomarkers, such as Eubacterium_1coprostanoligenes, Clostridiales, Phascolarctobacterium, Acidaminococcaceae and Ruminococcaceae_UCG_002 were selected by Lefse analysis. Our results reveal that hydrogen sulphide damaged the growth performance and destroyed the microbial bacteria balance of weaning pigs. The concentrations of hydrogen sulphide should fall below 5 mg/m3 .


Subject(s)
Cecum/microbiology , Gastrointestinal Microbiome , Hydrogen Sulfide/metabolism , Sus scrofa/growth & development , Sus scrofa/microbiology , Animals , Gases/metabolism , Weaning
16.
Vet World ; 13(9): 1902-1909, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33132604

ABSTRACT

BACKGROUND AND AIM: Weaning pigs normally suffer from many stressors which have impaired growth performance and immunity. Hydrolyzed yeast has been proposed as an alternative feed additive. The aim of this study was to investigate the effects of various levels of hydrolyzed yeast (HY) supplementation in the feed of weaning pigs on growth performance, diarrhea incidence, immunity, antioxidant capacity, and microbial populations. MATERIALS AND METHODS: A total of 144 crossbred weaning pigs (Duroc × Landrace × Large White) with a mean body weight (BW) of 7.46 kg were randomly assigned to one of four treatments during a 5-week feeding trial. Treatments consisted of a basal diet without HY inclusion (control), or the basal diet supplemented with HY at 0.5, 1.0, and 1.5 g/kg of diet, respectively. RESULTS: Piglets fed with 1.0 or 1.5 g/kg HY presented significantly increased BW (p=0.009) and decreased incidence of diarrhea (p=0.001). The final BW (p=0.012), average daily gain (p=0.094), and average daily feed intake (p=0.091) showed a linear improvement with the level of HY inclusion. However, the gain-to-feed ratio was unaffected by dietary treatments. Linear responses to the HY supplementation levels were also observed for blood urea nitrogen (p=0.030), total protein (p=0.017), lymphocyte percentage (p=0.064), catalase activity (p=0.089), malondialdehyde (MDA) level (p=0.001), Salmonella spp. (p=0.024), Escherichia coli (p=0.021), and Lactobacillus spp. (p=0.048). Dietary inclusion of HY at 1.0 and 1.5 g/kg resulted in increased immunoglobulin A and G secretions (p=0.042 and p=0.022, respectively) and decreased MDA concentration (p<0.01) and Salmonella spp. (p=0.026) and E. coli (p=0.050). CONCLUSION: It was concluded that HY inclusion at 1.0 and 1.5 g/kg in the diet of weaning pigs improve BW, immunoglobulin secretion, and antioxidant enzyme activity, whereas it lowers diarrhea occurrence, lipid peroxidation, and pathogenic bacteria in weaning pigs.

17.
BMC Vet Res ; 16(1): 439, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176765

ABSTRACT

BACKGROUND: Mealworm beetle T. molitor (Coleoptera: Tenebrionidae) (Linnaeus, 1758) is one of the most important cosmopolitan primary storage pests, scavenging on a variety of post-harvest grains and affecting the quality and safety of food and feed. In addition to being an important factor in feed hygiene, the insect can also be an epidemiological factor of canthariasis. Livestock infestations with T. molitor are rarely reported. This article describes T. molitor-caused canthariasis in pigs in large scale closed-cycle farming. RESULTS: In the spring, we registered a significantly increased mortality among weaned pigs. In autopsy, live 3-6 mm long T. molitor larvae were found in their stomachs, especially in the non-glandular oesophageal region, on average 2-3 larvae per 10 cm2 of gastric mucosa. Corrective actions reduced the number of deaths back to basal levels. CONCLUSIONS: This is the first documented case of potentially lethal gastric canthariasis in weaned pigs, caused by invasion of T. molitor larvae. Although canthariasis caused by T. molitor has not been a significant problem in farm animals so far, our case indicates that the presence of mealworm beetles is a potential threat to animal welfare and health.


Subject(s)
Larva/physiology , Stomach Diseases/veterinary , Swine Diseases/parasitology , Tenebrio/physiology , Animal Feed/parasitology , Animals , Stomach Diseases/parasitology , Sus scrofa , Swine , Tenebrio/growth & development
18.
Animals (Basel) ; 10(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316523

ABSTRACT

The experiment aimed to investigate the effects of dietary ß-mannanase supplementation on growth performance, apparent total tract digestibility (ATTD) of nutrients, intestinal integrity, and the immunological and oxidative stress parameters in weaning pigs. A total of 64 newly weaning pigs (initial body weight: 6.96 ± 0.70 kg) were allotted to two dietary treatments in eight replicates per treatment with four pigs per pen based on body weight and sex. Dietary treatments were 1.) CON (control: corn-soybean meal based basal diet) and 2.) ß-mannanase (basal diet +0.06% ß-mannanase). The ß-mannanase supplementation did not affect growth performance, concentrations of acute phase protein, superoxide dismutase and glutathione peroxidase. However, the pigs fed the ß-mannanase-supplemented diet had greater ATTD of ether extract, jejunum villus height, and villus height-to-crypt depth ratio, and lower crypt depth compared with those fed the CON diet (p < 0.05). The pigs fed the ß-mannanase-supplemented diet tended to have the lower count of E. coli in cecum than those fed the CON diet (p = 0.08). In conclusion, dietary ß-mannanase supplementation did not affect growth performance, immune response and oxidative stress of weaning pigs, whereas it increased fat digestibility and had positive effects on intestinal integrity and cecum microflora by reducing the count of E.coli.

19.
Food Chem Toxicol ; 141: 111373, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32330547

ABSTRACT

The objectives of this study were to determine the effects of deoxynivalenol (DON) on growth performance and intestinal microbiota in weaning piglets, and potential efficacy of a modified hydrated sodium calcium aluminosilicate (HSCAS) adsorbent to reduce DON toxicity. Four groups of 21-day-old male piglets (n = 7/group) were fed either a control diet, or diet containing 1.0 or 3.0 mg/kg DON, or 3.0 mg/kg DON plus 0.05% modified HSCAS for 28 d. Compared to the control, dietary DON at 1.0 and/or 3.0 mg/kg reduced (P < 0.05) the body weight gain (16.0-60.8%) and feed intake (18.1-38.7%) during the whole experiment, and increased (P < 0.05) the feed/gain ratio (12.8-33.8%) between d 1-28. The body weight gain and feed intake were further decreased (P < 0.05) in 3.0 mg/kg DON in comparison to 1.0 mg/kg DON during d 15-28. DON exposure reshaped gut microbial structure by drastically affecting the abundance of several bacterial phyla, families and genera, including dysbiosis of Actinobacteria, Cyanobacteria, Firmicutes, and Proteobacteria in small intestine. Notably, dietary Amdetox™ supplementation alleviated the adverse effects of DON on growth performance of piglets and improved the intestinal flora disorder. Therefore, the current study has revealed that Amdetox™, the modified HSCAS binder, can alleviate DON-induced negative effects and could be used as a promising countermeasure for reducing DON toxicity.


Subject(s)
Aluminum Silicates/chemistry , Gastrointestinal Microbiome/drug effects , Growth/drug effects , Trichothecenes/pharmacology , Animal Feed/analysis , Animals , Bacteria/classification , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Male , RNA, Ribosomal, 16S/genetics , Species Specificity , Swine
20.
Asian-Australas J Anim Sci ; 33(10): 1617-1623, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32054199

ABSTRACT

OBJECTIVE: This study was conducted to investigate the effects of dietary probiotic blend and liquid feed program at different nutritional densities on growth performance, nutrient digestibility, fecal score of weaning piglets. METHODS: A total of 120 weaning pigs with an initial body weight of 7.05±0.93 kg per pig (21 days of age) were randomly allocated into 1 of the following 8 dietary treatments (3 replicates per treatment with 5 pigs per replicate) in a 2×2×2 factorial arrangement (nutrition levels: apparent metabolic energy [AME] = 3,500 kcal/kg, crude protein [CP] = 20% vs AME = 3,400 kcal/kg, CP = 19.42%; feed types:dry vs wet; probiotics levels: 0 mg/kg vs 300 mg/kg). RESULTS: During d 5 to d 15, greater average daily gain (ADG) and average daily feed intake (ADFI) (p<0.05) were observed in probiotics treatments. During d 15 to d 25, gain:feed (G:F) ratio (p<0.05) were significantly improved in probiotics, wet feed and high nutrition diet. Moreover, two interactions i) between nutrition levels and feed types, and ii) between nutrition levels and probiotics were found in G:F ratio. Furthermore, there was a significant positive interaction on G:F among those 3 factors (p<0.05). Overall, increasing ADG, ADFI, and G:F ratio were detected in probiotics treatment significantly (p<0.05). Besides, an obvious reduction on fecal score was observed in probiotics treatment from d 0 to d 5 (p<0.05). There was an interactive effect on fecal score between feed types and nutrition concentrations from d 5 to d 25 (p<0.05). CONCLUSION: These results indicated that probiotics supplementation could benefit growth performance and reduce the frequency of watery feces. Besides, wet feed program (feed:water = 1:1.25) could improve the G:F. The effect of liquid feed or probiotic could be influenced by dietary nutrition density in weaned piglets. An increased value of G:F was obtained when wet feeding a high nutrition diet (100 kcal higher than NRC 2012 recommendations) was supplemented with probiotics for 15 to 25 days.

SELECTION OF CITATIONS
SEARCH DETAIL
...